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In noise control, identification of the source velocity field remains a major problem open

to investigation. Consequently, methods such as nearfield acoustical holography (NAH),

principal source projection, the inverse frequency response function and hybrid NAH

have been developed. However, these methods require free field conditions that are

as inverse patch transfer functions, designed to identify source velocities and developed

in the framework of the European SILENCE project. This method is based on the

definition of a virtual cavity, the double measurement of the pressure and particle

velocity fields on the aperture surfaces of this volume, divided into elementary areas

called patches and the inversion of impedances matrices, numerically computed from a

modal basis obtained by FEM. Theoretically, the method is applicable to sources with

complex 3D geometries and measurements can be carried out in a non-anechoic

environment even in the presence of other stationary sources outside the virtual cavity.

In the present paper, the theoretical background of the iPTF method is described and the

results (numerical and experimental) for a source with simple geometry (two baffled

pistons driven in antiphase) are presented and discussed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Nearfield acoustical holography (NAH), first introduced by Williams et al. [1,2], is based on the 2D Fourier Transform of
the complex pressure field at a given frequency measured on a hologram near the source. Measurements of the pressure
field are generally made on a plane surface and make possible the determination of the 3D source velocity field. However,
NAH is mainly applicable to simple geometries (planes [3], cylinders [4] and spheres [5]). Furthermore, problems of
discontinuities exist at boundaries due to the lack of information beyond the measurement zone, though information is
nevertheless necessary in order to compute the 2D Fourier Transform. Thus measurements have to be made in the
acoustical nearfield of the structure to avoid the influence of boundary effects.

The inverse frequency response function method is based on the evaluation and inversion of transfer matrices that can
be obtained either experimentally or numerically. In the latter case, if the computation of the transfer functions is based on
the boundary element method, it is called iBEM. This method can be used to reconstruct acoustic radiation on arbitrary
surfaces [6]. Martinus [7] uses this method to determine the distribution of particle velocity on the open end of a
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rectangular duct and shows that sound pressure field measurements do not have to be made in the nearfield of the source
to obtain good results. However, the main drawback of iBEM is that it demands an excessive number of measurements to
determine the acoustic field on a complex structure, since it requires a fine mesh definition (six nodes per wavelength). The
difficulty of the method also stems from the inversion of the transfer matrices, which are often ill-conditioned and thus
require the use of regularization methods.

Other methods have also been developed to overcome the difficulties and limitations inherent to NAH and iBEM. Thus a
hybrid NAH was introduced [8,9] based on a modified HELS (Helmholtz equation least squares) method [10,11]. It allows
reconstructing the pressure field on a complex shaped surface very close to the source surface. As with NAH applications,
hybrid NAH requires regularization, due to measurement uncertainty and the incompleteness of the acoustic pressure field
leading to ill-conditioned transfer matrices. Furthermore, the modified HELS method can also be combined with iBEM [12] to
reconstruct acoustic quantities on a virtual sphere enclosing the source structure, possibly leading to the loss of nearfield
information. Finally, to avoid large numbers of measurements, the principal source projection method was developed [13,14].
This method is based on the evaluation of a radiation operator between the source surface, represented by a distribution of
elementary sources, and a grid of measurements. In traditional methods like iBEM, the number of identified acoustic sources
is limited to the number of microphones in order to guarantee the uniqueness of the solution. On the contrary, for the
principal source projection method, the number of quantified sources is higher than the number of microphones, which
means that the system is under-determined. In addition, to identify the data on the source surface, the transfer functions,
calculated between a point of the elementary source and a measurement point, have to be inverted. The transfer matrix is
often ill-conditioned, which implies the use of regularization methods such as truncated singular value decomposition.

In this article, an alternative method, i.e. the iPTF method, is introduced to identify source velocities. This method is
derived from the patch transfer functions (PTF) method [15–17]. In its direct formulation, the PTF method is a tool used to
predict pressure inside and outside a cavity containing acoustic sources and apertures by relying on substructuring and
impedance concepts. The acoustical medium is divided into subdomains and PTFs are evaluated by suitable methods for each
subdomain (FEM, Rayleigh approach, measurements, y). Subdomains are then coupled through their common surface and
divided into patches. Coupling conditions are written for each patch as pressure and velocity equations, describing the local
equilibrium. A system of linear equations is finally obtained, where the unknowns are coupling patch velocities. The system is
solved to determine the coupling velocities and finally the pressures at any point of the acoustical domain.

The aim of the inverse approach (iPTF method) is to determine source velocities from patch pressures and velocities
measured on boundaries of a virtual cavity. Theoretically, the iPTF method allows identifying source velocities in a noisy
environment (i.e. in the presence of other sources) by the replicated measurement of the pressure and particle velocity
fields on a surface surrounding the source. This is not possible with classical methods as they only use sound pressure
measurements. Measurements can thus be made, for instance, on a part of an engine in operation. However, as classically
observed in inverse methods, the inversion of an ill-conditioned matrix is required. However, this drawback can be
bypassed by using suitable regularization techniques such as truncated singular value decomposition or that proposed by
Tikhonov. Finally, one of the advantages of the iPTF method is the use of the finite element method (FEM) as a solver.
Whereas other methods require analytical or BEM models to estimate transfer functions, iPTF only requires the modal basis
of a virtual cavity to compute Patch Transfer Functions. This makes the method applicable even to sources with complex
geometries.

The present article deals with the theoretical background of the method and its numerical and experimental application
to a simple case (two baffled pistons driven in antiphase). This test case is voluntarily simplified in order to facilitate the
study of the main features of the method proposed, namely the size of the virtual cavity, the number of measurement
patches, the ability to localize and separate sources and finally the robustness of the method with respect to an external
stationary disturbing source. Experimental validations of the iPTF approach confirm the expected advantages and
demonstrate the applicability of the method.

2. Theoretical background of the iPTF method

2.1. Basic concept of the iPTF method: the integral formulation

Let us consider the acoustic cavity O presented in Fig. 1. The acoustical domain O is delimited by a rigid surface Sr, an
absorbing surface Sa, a vibrating surface Sv and a surface with Dirichlet conditions Sd. Furthermore, an acoustic source S0 is
located inside the acoustic cavity O, but outside the volume Oc. Consequently, the problem to be solved is expressed by

DpðMÞþk2pðMÞ ¼ S0ðMÞ, 8M 2 O,
qp

qn
ðQ Þ ¼ 0, 8Q 2 Sr ,

qp

qn
ðQ Þ ¼�jroVðQ Þ, 8Q 2 Sv,

pðQ Þ ¼ p0, 8Q 2 Sd,

pðQ Þ ¼�
Z

jro
qp

qn
ðQ Þ, 8Q 2 Sa,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(1)
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Fig. 1. Integral problem.
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where D is the Laplacian operator, q=qn the normal derivative outwardly directed, r the density of air, V(Q) the normal
velocity imposed on Sv, p0 the pressure imposed on Sd, Z the surface impedance of the absorbing material, o the angular
frequency and k the acoustic wavenumber.

Now, let us write Green’s identity applied to the volume Oc � O,ZZZ
Oc

ðCDF�FDCÞdOc ¼

ZZ
Sc

F
qC
qn
�C

qF
qn

� �
dSc : (2)

The previous expression is very general and functions F and C are arbitrary. In the present work, we first assume that
function F is the acoustic pressure p. In the volume Oc , the pressure satisfies the homogeneous Helmholtz equation as
expressed in

DpðMÞþk2pðMÞ ¼ 0, 8M 2 Oc: (3)

The function C is chosen as a particular Green’s function G satisfying the homogeneous Neumann’s problem for a point
Q 0 located on the boundary surface Sc as expressed in

DGðM,Q 0Þþk2GðM,Q 0Þ ¼ dðM�Q 0Þ, 8M 2 Oc , Q 0 2 Sc ,

�
1

jro
qG

qn
ðQ ,Q 0Þ ¼ 0, 8Q 2 Sc :

8><
>: (4)

Introducing Eqs. (3) and (4) in Eq. (2), we finally obtain the integral equation given by

pðQ 0Þ ¼

ZZ
Sc

GðQ ,Q 0Þ
qp

qn
ðQ ÞdQ : (5)

When using Euler’s equation in Eq. (5), the acoustic pressure pðQ 0Þ at point Q 0 is related to normal velocity Vn(Q) at each
point Q of surface Sc as expressed

pðQ 0Þ ¼ �jro
ZZ

Sc

GðQ ,Q 0ÞVnðQ ÞdQ : (6)

The Green’s function used is that of a virtual cavity whose boundary surface Sc is assumed to be rigid. It is important to
note that these rigid wall boundary conditions have no physical reality. They exist only to provide a mathematical tool for
solving the virtual cavity problem.

Finally, the key point of this formulation is that external sources located outside the cavity do not modify the integral
equation. In other words, this formulation is independent of acoustic sources external to Oc .

2.2. Basic equation of the iPTF method

Let us consider the practical situation given in Fig. 2, where a virtual cavity of surface Sc ¼ Sm [ Sv surrounds the source
and separates the acoustical domain into a virtual cavity Oc and an external domain Oe.

The numerical solution of the previous integral equation is based on the discretization of surface Sc into N elementary
areas Ar called patches. The discretization of Eq. (6) into patches leads to Eq. (7), describing the relation between the space
average normal velocity vr on patch r and the space average pressure pj on patch j. It should be noted that this relation
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Fig. 2. Basic identification problem.
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remains true provided that the size of the patches is small compared to the acoustic wavelength.

pj ¼
XN

r ¼ 1

Zjrvr : (7)

In Eq. (7), the space average pressure and velocity are related by the patch impedance Zjr. Consequently, the patch
impedance Zjr between the excited patch r and the receiving patch j is defined as the ratio of the space average pressure pjr

on a patch j and the space average normal velocity vr on a patch r as expressed in

Zjr ¼
pjr

vr
, (8)

where the space average is defined as �r ¼ 1=Ar

R
Ar
� dAr .

The basic equation of the iPTF is derived from Eq. (7), where the contribution of patches is separated into patches
belonging to source surface Sv and patches belonging virtual surface Sm as expressed by

pj ¼
XP

k ¼ 1

Zjkvkþ
XM
i ¼ 1

Zjivi, (9)

where j and i belong to Sm, k belongs to Sv and N=M+P.
Now, the iPTF formulation can be obtained from Eq. (9) in a straightforward manner. For the sake of simplicity, Eq. (9) is

written in matrix form and the following notations are considered: Pj ¼ pj, Vi ¼ vi and Vk ¼ vk.

fPjg ¼ ½Zjk�fVkgþ½Zji�fVig: (10)

It should be noted that in matrices [Zji] and [Zjk], the number of lines j represents the number of patch pressure
measurements {Pj}, while the number of columns k corresponds to the number of identification patches of source velocity
{Vk} and i represents the number of patch velocity measurements {Vi}.

The vector of source velocities {Vk} is thus easily obtained after simple matrix manipulation and is the basic equation of
the iPTF method,

fVkg ¼ ½Zjk�
�1ðfPjg�½Zji�fVigÞ: (11)

Insofar as the impedance matrices [Zjk] and [Zji] are computed numerically, only pressures {Pj} and velocities {Vi} have to
be measured on each patch of the virtual surface Sm to calculate the mean patch source velocities {Vk}. In the iPTF method,
patch pressure {Pj} and patch velocity {Vi} are measured with pressure–velocity (PU) probes. These PU probes have been
assessed by Jacobsen and Jaud [18,19]. One important point is that the velocity field on the virtual surface can be due to the
direct field from the vibrating surface as well as sound reflected by obstacles placed outside the virtual cavity. Thus this
method is not restricted to the anechoic environment and is theoretically independent of sources located outside
the measurement area by virtue of the Kirchhoff’s integral. Nevertheless, the inversion of the impedances matrices can be
difficult, since these matrices are rectangular and ill-conditioned as is presented in the Section 2.4.

2.3. Computation of patch impedance Zjr

As already mentioned in Section 2.2, the patch impedance matrices [Zjk] and [Zji] are computed numerically. They are
derived from the integral formulation (see Eq. (6)) and the expansion on virtual rigid wall cavity modes. To obtain these
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quantities, it is necessary to calculate function GðQ ,Q 0Þ satisfying Eq. (4). To do this, we expand the solution on the normal
modes of the rigid wall cavity. This leads to the Green’s function given by Eq. (12). In Appendix A, the detailed calculation
of Green’s function is presented.

GðQ ,Q 0Þ ¼
X

n

c2fnðQ ÞfnðQ
0Þ

Lnðo2
n�o2þ jZnonoÞ

, (12)

where Ln is the norm of the mode n, Zn the modal damping, avoiding singularities when o¼on.
Then, the pressure pðQ 0Þ created by a constant normal velocity vr imposed on a patch r of surface Sr can be calculated

from

pðQ 0Þ ¼ �jroc2Sr

X
n

fnr
fnðQ

0Þ

Lnðo2
n�o2þ jZnonoÞ

vr : (13)

The patch impedance Zjr between the excited patch r and the receiving patch j is therefore given by Eq. (14), where the
space average pressure over the receiving patches is introduced:

Zjr ¼
pjr

vr
¼�

X
n

jorc2Sr

Lnðo2
n�o2þ jZnonoÞ

fnr
fnj

: (14)

It can be seen that the natural frequencies on and the mode shapes of the virtual rigid wall cavity fn are obtained by FE
calculation, which permits dealing with complex source geometries.

2.4. Explanations of ill-conditioned impedance matrices

In the iPTF method, impedance matrix [Zjk] has to be inverted. However, this matrix can be ill-conditioned.
Consequently, it is important to identify factors causing the ill-conditioning of matrix [Zjk]. To achieve this, the
conditioning number k is a good indicator and serves as the basis for the following discussion. The conditioning number is
defined in this article as the ratio between the biggest singular value s1 of [Zjk] and the smallest one sn as expressed by

kðZjkÞ ¼
s1

sn
: (15)

It should be recalled that matrix [Zjk] describes the relation between the number of patches j, where patch pressures {Pj}
are measured and the number of patches k, where patch source velocities {Vk} are identified.

2.4.1. Influence of pressure information on the source surface

Let us consider the source surface presented in Fig. 3. To avoid particular cases, this source surface has no symmetries.
A virtual cavity is then defined as are the measurement and source patch meshes, as shown in Fig. 3. The dimensions of the
virtual cavity are about 500�350�400 mm3.

First, we consider the standard way of using the method, in which pressure is measured on all virtual surfaces but not
on the source surface. In this case, the comparison of conditioning number versus frequency is presented in Fig. 4.
The analysis shows that the impedance matrix is ill-conditioned. The conditioning number decreases globally with
frequency and peaks can be seen on the resonance frequencies of the cavity. To clarify this tendency, we consider a second
situation corresponding to the first, but with the addition of a pressure measurement on the source surface.

The conditioning number, presented in Fig. 4, clearly indicates that the impedance matrix is better conditioned.
Pressure information on the source surface is therefore important for decreasing the conditioning number. Unfortunately,
measuring pressure on the source surface is not often possible in reality. However, it may be sufficient to measure only a
few pressure data on the source surface in order to effectively decrease the conditioning number. In this way, we assume
that pressure is measured on all the virtual surfaces and on only one patch located in the center of source surface. The
result is presented in Fig. 4 with one additional pressure point on the source surface. Above 1200 Hz, the conditioning
number is divided by two which represents a real improvement. However, at a lower frequency, no significant
modifications of the conditioning number appear.

2.4.2. Influence of the number of pressure control points

From a practical point a view, one may ask whether all the pressure information on the virtual surfaces is necessary. To
this end, we used the same source geometry and virtual cavity as in Section 2.4.1, but only used the pressure information
measured on the top virtual surface (see Fig. 3), instead of using the pressure information on all the virtual surfaces.
Conditioning numbers versus frequency are presented in Fig. 5 for the previous situations. As expected, the analysis shows
that it is preferable to measure the pressure field on all the virtual surfaces to limit the conditioning number.

Thus the conclusion is simple: the greater the number of patch pressure measurements, the lower the conditioning
number. Practically, it is recommended to measure pressure and velocity data on all the patches of the virtual surface and if
possible on additional points on the source surface. In the rest of this paper, pressure information on the source surface is
voluntarily not measured since the aim is to find a method for identifying source velocity well without measuring data on
the source surface.
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Fig. 3. Geometry of the vibrating source and patch mesh definition on the surface of the virtual cavity.
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2.4.3. Influence of virtual cavity dimensions

In the iPTF method, the virtual cavity can be defined arbitrarily. It is therefore interesting to know whether it is
preferable to perform measurements on a small or large virtual cavity. To compare the results, we consider the same
source geometry as in the previous subsection (see Fig. 6). The virtual cavity smaller than the previous one is almost a
parallelepiped with dimensions about 500�350�120 mm3 and the patch mesh is defined on virtual surfaces as presented
in Fig. 6. Furthermore, we assumed that pressure and particle velocity are measured on all the virtual surfaces.

Fig. 7 presents conditioning numbers for large and small virtual cavities (see Figs. 3 and 6). This figure shows that the
patch impedance matrix conditioning number for a small cavity is better at low frequency than that obtained for a large
cavity. However, when modal overlap is achieved both cavities have similar conditioning numbers. A small cavity is
therefore preferable to limit the conditioning number. This point can be associated with the well-known need with
holographic methods for measurements to be made in the nearfield of the source due to the evanescent nature of the
acoustic nearfield.

2.4.4. Influence of virtual cavity modes

Ill-conditioning can also be due to poor definition of the virtual volume and patch mesh. Ouisse et al. [16] define a
numerical criterion to limit the ill-conditioning of patch impedance matrices. This criterion stipulates that the order of
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Fig. 6. Geometry of the vibrating source and patch mesh definition on the surface of a 500�350�120 mm3 virtual cavity.
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virtual cavity modes in one direction has to be greater than or equal to the number of patches in the same direction. It
corresponds in fact to the number of degrees of freedom necessary to ensure that patch motions are independent. To
demonstrate the validity of this criterion, the conditioning number is evaluated for a parallelepiped virtual cavity whose
dimensions are 450�350�130 mm3. A patch mesh is then defined on the measurement and source surface and natural
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modes were extracted up to 2, 3, 4 and 5 kHz. In each case, patch impedance matrices were computed in the frequency
range of interest [10, 2000 Hz]. As shown in Table 1, the criterion is not respected for modes extracted up to 2 kHz;
consequently, the patch impedance matrix is extremely ill-conditioned (see Fig. 8). Furthermore, the criterion is respected
above 3 kHz and conditioning numbers are very much better than those obtained for modes extracted up to 2 kHz.

This criterion is not directly applicable when the geometry of the virtual cavity is complex. However, the number of
virtual cavity modes must be at least equal to the number of patches.

3. Numerical and experimental validation of the iPTF method

In this section, we seek to validate the iPTF method numerically and experimentally from a simple set-up. The selected
set-up consists of two baffled pistons driven in antiphase as shown in Fig. 9. The chosen test case is voluntarily simplified
in order to clearly establish how the method is able to localize and separate vibrating sources. The identification area
(dimensions: 450�350 mm3) is divided into 30 patches where pressure and particle velocity are assumed to be constant.
Furthermore, the patch impedance matrices computed in this validation section are sufficiently well conditioned to avoid
the use of regularization techniques.
Table 1
Comparison between the maximal order of cavity modes and the number of patches along directions x, y and z.

Modal frequency limit (kHz) 2 3 4 5

Maximal order of modes 5�4�1 7�6�2 10�8�3 13�10�3

Number of measurement patches 6�5�2

Number of source patches 6�5

Fig. 9. Definition of the validation set-up—two baffled pistons driven in antiphase.
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3.1. Numerical validation

3.1.1. Validation of the basic principle

To validate the basic principle given by Eq. (11), we define a parallelepiped virtual cavity 450�350�20 mm3 around the
source (see Fig. 10a). Moreover, in the PTF method, the definition of patch meshes is driven by a wavelength criterion according
to Ouisse et al. [16]. They have demonstrated that in its direct formulation, the PTF method is applicable with a lac=2 criterion
for patch meshes. However, for the iPTF method, an additional condition must be considered, i.e. the measurement mesh has to
be fine enough to obtain a sufficient number of measurement data. In other words, the number of measurement patches has to
be larger than the number of identification patches to avoid under-determination of the problem. Based on this observation, the
measurement surface is divided into 139 patches and pressure and particle velocity fields are computed analytically at the
center of each measurement patch with the standard Rayleigh integral method (see Appendix B for details).

The process allows good identification of the source velocity, since there is a slight difference between the reference and
identification maps at 240 Hz, as shown in Figs. 11 and 12.
Fig. 10. Definition of (a) the virtual cavity and (b) the patch mesh around the source.
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3.1.2. Robustness of the iPTF method—influence of the measurement noise

Measurement noise is an important parameter in result accuracy. In order to analyse the influence of measurement
uncertainties, we propose slightly modifying the exact pressure and particle velocity fields computed analytically by
introducing two independent Gaussian random variables DQ and Df, that simulate errors on the magnitude and phase of
the measurement data [20]:

~P ¼ Pexact:DQp:ejDf,

~V ¼ Vexact:DQv:ejDf,

(
(16)

where DQp ¼ pjPexactjXþ1 and Df¼ arctanðpÞY , with p are the noise percentage while (X, Y) are two independent Gaussian
random variables.

Figs. 13 and 14 show the influence of measurement uncertainties on identifications for p=30%. It can be seen that
measurement noise has a limited influence on identification accuracy, insofar as the magnitude and spatial distribution of
source velocities are affected only marginally. Consequently, the proposed method appears to be robust with respect to
measurement uncertainties.

3.2. Robustness of the iPTF method—influence of correlated disturbing source

When performing measurements in situ, correlated sources can modify the pressure and the particle velocity fields
measured around the source to be identified. Consequently, virtual sources are likely to appear on the hologram due to the
bad estimation of the acoustic field in the measurement area. As underlined in Section 2, the iPTF method is theoretically
independent of the presence of external sources. To prove this theoretical aspect, a third piston is inserted in the rigid
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Fig. 13. Numerical validation for a 450�350�20 mm3 virtual cavity—comparison between (a) the reference map and the identified maps obtained for
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plane at 240 Hz, (-) reference, (- -) identification for p=30%.
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baffle, where the velocity is 5 times greater than that of the first piston (see Fig. 15). This third disturbing piston modifies
the acoustic field computed at the center of the measurement patches. As an example, the mean square pressure is
increased by 6.5 dB at 240 Hz, while the mean square particle velocity is increased by 3.5 dB at the same frequency.

Fig. 16 presents the comparison of the spatial distribution of reference source velocity with the identified source
velocity obtained in the presence of a disturbing acoustic source. The maps prove that the source velocity can be well
identified in the presence of a disturbing source (Fig. 17).
Fig. 15. Location of the disturbing piston outside the identification area.
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Fig. 16. Numerical validation for a 450�350�20 mm3 virtual cavity in the presence of an external disturbing source—comparison of (a) the reference

map and (b) the identified map obtained at 240 Hz.
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Fig. 17. Numerical validation for a 450�350�20 mm3 virtual cavity in the presence of an external disturbing source—comparison of source velocity

along a line (x, 0.245 m) across the prediction plane at 240 Hz, (-) reference, (- -) identification.
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3.2.1. Influence of the virtual cavity dimensions

The dimensions of the virtual cavity are essential in the identification process since the further the measurement is
made from the source, the greater the loss of near field information related to the evanescent waves. In this case, it is hard
to identify the source velocity precisely due to the lack of information. To demonstrate the influence of the cavity
dimensions on identification, we define a virtual cavity whose dimensions are 450�350�130 mm3. Furthermore, the
measurement surface is divided into 259 patches. As shown in Fig. 18, the iPTF method identifies the source velocities
successfully. However, as classically observed in other holographic methods (NAH or iBEM), source localization and
separation are less clear because of the absence of near field information in the data considered.

3.3. Experimental validation

3.3.1. Experimental set-up

The experimental validation consists in reproducing as reliably as possible the set-up used for the numerical validation
in order to evaluate the applicability and the robustness of the method in a non-anechoic environment. To do this, the
acoustic baffle consists of a thick wooden plate 700�600�40 mm3, in which two loudspeakers supplied by white noise
are inserted. Furthermore, the identification area is materialized on the rigid baffle as shown in Fig. 19. It can also be seen
that the measurements were performed in a non-anechoic chamber and thus included sound reflected from room
boundaries. Finally, reference and acoustic field measurements were carried out with a PU probe in the very nearfield of
the source (5 mm from the acoustic source) and a microphone was used as phase reference.

As in the previous sections, we defined the same patch meshes around the identification area as those used in the
numerical validation. It should be recalled that the space averaged data of the pressure and particle velocity on the patches
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Fig. 18. Numerical validation for a 450�350�130 mm3 virtual cavity—comparison between (a) the reference map and (b) the identified map obtained

with the iPTF method at 240 Hz.

Fig. 19. Experimental set-up.
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are represented by one measurement point at the center of the patch. Therefore a positioning error of the PU probe can
influence the quality of the experimental results. Of course, other factors can be involved such as the orientation of normal
vectors for particle velocity measurements or uncertainties due to transducer quality.

In the following, we use an indicator e which allows thorough determination of the identification error of the iPTF
method. This indicator is defined in

e¼ 10log
V2

id

V2
ref

�����
�����, (17)

where Vref is the source velocity measured in the very nearfield of the source and Vid is the identified source velocity.

3.3.2. Validation of the basic principle

The experimental validation of the basic principle is performed by reproducing the numerical experiment used in
Section 3.1. When applying the iPTF method to experimental data, good agreement between the measured and identified
source velocity is observed in both magnitude and spatial distribution (see Figs. 20 and 21). Analysis of Fig. 20 shows that
the identification error on the first excited patch ((x, y)=(0.1125, 0.245 m)) does not exceed 0.7 dB over the entire frequency
range.

3.3.3. Robustness of the iPTF method—influence of correlated disturbing source

To test the robustness of the method in the presence of a correlated disturbing source, we used the same virtual cavity
as in the previous case and a third loudspeaker located outside the measurement area was added (see Fig. 22). A reference
measurement was performed again to take into account the acoustic field modifications due to the disturbing source.

The pressure power spectrum measured on a patch of the measurement surface with and without the disturbing source
highlights its influence. Disturbing pressure was in general of the same order as the primary source pressure and at certain
frequencies differed by more than 5 dB (see Fig. 23).

The iPTF method allows determining a source velocity whose magnitude differs from the reference by 0.72 dB at most
over the entire frequency range, as shown in Fig. 24 which presents the identification error on the first excited patch
((x, y)=(0.1125, 0.245 m)). Moreover, Fig. 25 shows a comparison between the reference map and the identified map. This
comparison confirms the ability of the method to reconstruct the spatial source velocity distribution in the presence of an
external stationary disturbing source.

3.3.4. Influence of the virtual cavity dimensions

As already mentioned in the numerical validation of the method, the further from the source the sound field is
measured, the greater the loss of information related to the evanescent waves. The aim of this section is to determine
experimentally how the absence of near field information affects identification accuracy. To achieve this, we use the virtual
cavity with dimensions 450�350�130 mm3 defined in Section 3.2.1. Once again the iPTF method gives quite satisfying
results in both magnitude and spatial distribution (see Figs. 26 and 27). However, Fig. 26 shows that identification is less
accurate in magnitude than that performed on a cavity of smaller dimensions. However, the discrepancy is acceptable up
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Fig. 20. Experimental validation for a 450�350�20 mm3 virtual cavity—identification error on the first excited patch (x, y)=(0.1125, 0.245 m).
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Fig. 21. Experimental validation for a 450�350�20 mm3 virtual cavity—comparison of source velocity along a line (x, 0.245 m) across the prediction

plane at 240 Hz, (-) reference, (- -) identification.

Fig. 22. Experimental set-up—location of the disturbing source.
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to 425 Hz, where the height of the virtual cavity reaches lac=6 ð340=6� 425� 0:13 mÞ. Nevertheless, the method succeeds
in localizing the two loudspeakers, even if their magnitudes are underestimated.
4. Conclusion

The iPTF method allows identifying source velocities on complex structures. This paper introduced both the theoretical
background and the measurement methodology. The method comprises the measurement of the pressure and particle
velocity fields on the virtual cavity surfaces. This is quite simple when using PU probes. To prove the method’s efficiency,
an experimental validation was set up with two baffled pistons driven in antiphase.

As classically observed in holographic methods, one of the main drawbacks remains the loss of near field information
when measuring an acoustic field far from the source.

However, the combined use of an integral formulation, FEM as a solver and the double measurement of pressure and
particle velocity fields overcomes some of the limitations of classical methods related to simple structure geometry. Thus,
the main advantages of the iPTF method are its independence with respect to external stationary sources and its
applicability to complex shaped structures. Finally, further applications of the method on more complex structures than
that presented in this article, namely an L-shape plate and a vehicle precatalyst, can be found in Refs. [21,22].
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Fig. 23. Comparison between the pressure power spectrum obtained on a patch of the measurement surface (-) without and (- -) with the disturbing

source versus frequency.
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Fig. 24. Experimental validation for a 450�350�20 mm3 virtual cavity in the presence of an external correlated disturbing source—identification error

on the first excited patch (x, y)=(0.1125 m, 0.245 m).
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Fig. 25. Experimental validation for a 450�350�20 mm3 virtual cavity in the presence of an external correlated disturbing source—comparison

between (a) the reference map and (b) the identification map obtained experimentally in the presence of a disturbing source with the iPTF method at

240 Hz.
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Fig. 26. Experimental validation for a 450�350�130 mm3 virtual cavity—identification error on the first excited patch (x, y)=(0.1125, 0.245 m).
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Fig. 27. Experimental validation for a 450�350�130 mm3 virtual cavity—comparison between (a) the reference map and (b) the identified map

obtained experimentally with the iPTF method at 240 Hz.
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Appendix A. Calculation of Green’s function by a modal approach

The Green’s identity defined in Eq. (2) is then used, F is the mode shape fn of the virtual rigid cavity wall Oc satisfying
Eq. (18) and C is the function G satisfying Eq. (4):

DfnðMÞþk2
nfnðMÞ ¼ 0, 8M 2 Oc ,

�
1

jro
qfn

qn
ðQ Þ ¼ 0, 8Q 2 Sc :

8><
>: (18)

Consequently, by using Eqs. (2), where F¼fn and C¼ G, (4) and (18), we obtain the integral equation given by

fnðQ
0Þ ¼

ZZZ
Oc

ðk2
n�k2ÞfnðMÞGðM,Q 0ÞdM: (19)

The function G is now determined by expansion on the modal basis fnðMÞ:

GðM,Q 0Þ ¼
X

n

gnðQ
0ÞfnðMÞ: (20)

Using this decomposition in Eq. (19), one obtains:

gnðQ
0Þ ¼

c2fnðQ
0Þ

Lnðo2
n�o2Þ

, (21)

where the norm of modes is such that
RRR

Oc
fnðMÞfqðMÞdOc ¼Lndnq. Therefore the following expression is obtained:

GðM,Q 0Þ ¼
X

n

c2fnðMÞfnðQ
0Þ

Lnðo2
n�o2Þ

: (22)
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The patch impedance between a source patch k and a reception patch j is therefore:

Zjk ¼�
X

n

jorc2Sk

Lnðo2
n�o2Þ

fnk
fnj

: (23)

Obviously, in Eqs. (22) and (23), this modal composition caused problems at resonant frequencies. To avoid these
difficulties, we introduce the modal damping of fluid Zn, which is a constant in this study. Therefore, the term o2

n�o2 by
the term o2

n�o2þ jZnono is replaced in the denominator.

Appendix B. Radiation of a baffled piston

The Rayleigh integral formulation of a baffled piston is used to compute its radiation as expressed in

pðMÞ ¼�jro
R

SVðQ ÞGðM,Q ÞdQ ,

GðMQ Þ ¼
e�jkR

2pR
,

8><
>: (24)

VðQ Þ ¼
V n, 8Q 2 Spiston,

0 elsewhere:

(
(25)

However, insofar as the dimension of the piston is not negligible, the integral over the piston area is discretized into
nx � ny points. Consequently, Eqs. (24) and (25) become:

pðMrÞ ¼ jroV n
P
k

e�jkRkMr

2pRkMr

DxkDyk

RkMr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxMr
�xkÞ

2
þðyMr

�ykÞ
2
þðzMr

�zkÞ
2

q ,

8>><
>>: (26)

where ðxMr
,yMr

,zMr
Þ are the coordinates of the center of the patch r and (xk, yk, zk) are the coordinates of the point k

belonging to the piston.
The particle velocity is then easily obtained at the center of the patch r by using the Euler’s equation defined in

VðMrÞ ¼�
1

jro
qp

qne
ðMrÞ, (27)

where ne is the external normal vector to the virtual cavity.
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